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J. Phys. A : Gen. Phys., Vol. 5. August 1972. Printed in Great Britain. Q 1972 

Variational trial functions in quantum theory 
I. Bound states 

T L JOHN? and K L WILLIAMS$ 
t Department of Applied Mathematics and Mathematicdl Physics, University College, 
Cardiff, UK 
$ Computing Centre, University College, Cardiff. U K  

MS received 6 January 1972 in revised form 4 February 1972 

Abstract. We give a method of calculating variational trial functions in quantum theory. 
Applications are made to the discrete spectra of some simple one and two particle systems. 

1. Introduction 

Variational techniques have proved to be one of the most powerful methods in quantum 
mechanics. The biggest drawback in their application is the choice of a trial function : 
these functions are arbitrary apart from being integrable and having to satisfy boundary 
conditions in some methods. Here we propose a method which takes some account of 
the field in the functional form of the trial function and is similar to the variation- 
iteration method (see Morse and Feshbach 1953 p 113746, McEachran er al 1965. 
Kraidy and Fraser 1966, Bazley and Fox 1961 and Robinson 1969). 

In principle it is possible to consider the complex spectrum with the discrete and 
continuous spectra as special cases. However, when variational methods are used as a 
means of calculating wavefunctions as well as energy eigenvalues or phase shifts, then 
it is more convenient in computations to consider these cases separately. The integrals 
involved in the measurement of dynamical variables or transitions of systems, can be 
very sensitive to the accuracy of the wavefunctions. In this paper, referred to as I. we 
give a general account of the method and its application to the calculation of bound 
states, and in a second paper, referred to as 11, we consider applications to the continuous 
spectrum. As the main purpose of these papers is to discuss the usefulness of the proposed 
method and assess its accuracy, we restrict all applications to one and two electron 
systems, where the solutions are already known. 

2. The method for one particle systems 

Consider a particle of energy E and orbital angular momentum I moving in the central 
field potential U(r ) ;  generalization to more complicated systems is given later. We have 
to solve the Schrodinger equation (in atomic units) 

1152 
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wherefi(E1r) satisfies the boundary conditions 

fi(El0) = 0 

( 2 )  
N 

A(&) sin(kr -$T+ q,) for continuous states ( E  = k 2  > 0) 

fi(Elr) r ~ w  N‘ eCKr for discrete states ( E  = - K 2  < 0) 

and qI  is the scattering phase shift and N and N’ are normalizing constants. 
Alternatively, we can use the integral equation 

fi(Elr) = u,(EIr)+ loW G,(E,Ix, r ) ( -  W)+E-E,)f,(Elx) dx (3) 

to calculate fi(Elr), where E < Eo for E < O t  and E = E ,  for E >, 0. The function 
u,(Elr) and the free particle Green function G,(EIx, r )  are given by 

N .  
k U,(k21r) = - Jl(kr) COS 

u,(-K2lr) = 0 
(4) 

and the functions j,(z), nl(z) and h,(z) can be expressed in terms of Bessel functions 

j,(z) = ( $ ~ z ) ” ~ J ~ + ~ ( z )  

nl(z) = (- 1)f(&cz)112J-1-t(z) (6) 

h,(z) = j,(z) + in,(z). 

The expression (3) is more general than the usual one that appears in the literature 
and E # E ,  is possible in the case of the discrete spectrum. We can use an iteration 
procedure to solve equation (3) and this approach has the advantage that convergence 
can be obtained for a wide variety of initial functions; although there is no guarantee 
that the iterations will converge. For the continuous spectrum the Born procedure uses 
plane waves for its initial functions, Saraph and Seaton (1962) and Saraph (1963) in- 
corporate iteration and variational methods to speed up convergence of the iterated 
numerical solution of coupled integrc-differential equations arising in scattering theory, 
t For example in the case E < 0,l  = 0 from equation (3) fo( - K’Jr) behaves asymptotically as 

the integral only converges if K 3 K O ,  that is, E ,  3 E .  
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and McEachran et a1 (1965) and Kraidy and Fraser (1966) use an iteration procedure 
and variational methods ; their technique is similar to that given here and will be dis- 
cussed more fully in 11. 

We use equation (3) to define the trial functionsf:, and for convenience in discussion, 
we shall divide them into two types: type 1 

f)(Elr) = u,(Elr)+ G,(E,lx, r ) (  - U(x)+  E -  E,)$(x)  dx ( 7 )  

and type 2, the iterated functions 

fl""(E1r) = ul(Elr)+ G,(E,lx, r ) (  - U(x) + E - Eo)fj"- "'(Elx) dx 

n 3 1  (8) 

where $(x) andfjol'(Elx) are suitably chosen so that the integrals (7) and (8) exist and we 
assume that they depend on a set of m parameters ci( i  = 1,2 , .  . . , m). The trial functions 
(7) and (8) take some account of U(r )  in their functional form and it is to be expected 
that calculations with (8) will increase in accuracy the more iterations taken. 

JOX 

3. Tbe discrete spectrum 

For the discrete spectrum the energy E is unknown. We can, however, compute the 
integrals involved in equation (3), numerically if necessary, once we assign a value to E,. 
For the exact wavefunction, the integral (3) will converge only if E ,  2 E: with approxi- 
mate wavefunctions this restriction can be avoided. 

The trial functions of type 1 can be subdivided into type la 

or type lb, in the special case E = E ,  = - K 2  

fl(Elr) = - jox Gd - K21x, r)U(x)$(x) dx 

where we have written E, for E in equation (9), and we shall refer to them as type la and 
type l b  as indicated. 

Using the Rayleigh-Ritz method, trial functions are substituted in the variational 
integral 

and the parameters are calculated in the usual way. However, the functions (9) and (10) 
are not suitable as ii and K are functions of the energy, as yet undetermined. We adopted 
the procedure of treating ii or K as a parameter; thus the values of ;1 and - K2 in cal- 
culations will not necessarily be equal to the energy. 
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Since &) depends on the parameters ci(i = 1,. . . , m), we can calculate their values 
and that of 1 or K from the equations 

- 0  i = 1, ..., m 
8E‘ _ -  
aci 

Trial functions of type 2 can be used in a similar way; the nth iterated function cor- 
responding to (9) will be an nth order polynomial in 1 and the function corresponding 
to (lo), an n dimensional integral. Calculations with such trial functions will be of 
practical importance if the integrals are relatively simple. It is usually possible to obtain 
an improvement in accuracy with type 1 functions by making $(x) a more sophisticated 
function involving more parameters. Because of the practical difficulties involved in 
using type 2 trial functions the calculations discussed in $8 4 and 5 are confined to type 1 
functions. 

4. Applications to some one particle systems 

To illustrate the method we have applied types l a  and l b  trial functions to the central 
field potentials 

(i) square well 

U ( r )  = - U ,  O < r < r ,  

= o  r o < r < c o  

(ii) exponential potential 

U ( r )  = - U ,  exp( -r /ro)  

(iii) Coulomb potential 

(14) 

U ( r )  = -2Z/r (15) 

where U,? ro  and Z are constants. We have confined our applications to the case 1 = 0 
and the ground state energy eigenvalue. The one particle Green function for this case 
and E ,  < 0 is given by 

1 
K 

1 
K 

Applications to excited states can be made in the usual way, providing the excited state 
trial functions are made orthogonal to those of the ground state. 

Calculations for the square well and exponential potential can be simplified by 
making the change of variable r’ = r/ro and all cases are covered by varying Vb = 
and scaling the energy (ie dividing by rg). This is equivalent to putting ro = 1 and 
U ,  = Vb in equations (13) and (14); this holds for exact and variational calculations, 
including those with trial functions (9) and (10). 

Go( - K’Jx, r )  = - sinh Kx e-Kr O Q x G r  

(16) 
= - sinh K r  e-Kx r < x < c o .  
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1.6 

0.7 
1 .o 

2 1.077 
1.3 

A similar simplification is possible for the Coulomb potential (15); using the variable 
r' = r/Z, all cases are covered by 2 = 1 and scaling the energy tie multiplying by 2'). 

Variational methods are also an important means of calculating wavefunctions. 
We give tables of the ground state energy and expectation values of ( r p )  ( p  = - 2, - 1,1,2). 
We also compare graphically exact and variational wavefunctions. 

For the square well and exponential potentials, we have used the function 

$(x) = xe-'* (17) 
M being a number fixed arbitrarily. The trial functions corresponding to (9) and (10) are 
very simple one parameter functions, with I or K as parameters. Results for the trial 
function 

1.57 

2.32 
2.40 
2.59 
3.38 

fb(r) = r e-cr 

Table 1. Binding energy and expectation values for the square well potential 

(a )  U, = 4, r ,  = 1 
Binding energy 
Function Type l u  

0.7 1 0.399 0.407 0.407 0.398 0,384 0.407 
1.0 1 0,406 0,407 0.407 0.405 0.403 0.407 
1.077 1 0,405 0.406 0.406 0,405 0,403 0.406 0.300 0.407 
1 3  0.397 0.405 0,404 0,401 0.398 0,405 
1.6 , 0.379 0.400 0,400 0.391 0.379 0.400 

Expectation values ( r P )  
Function Type la Type Ih 4 Numerical 

~ 0.407 0.75 1.25 1.75 
- 

2.18 
2.24 
2.26 
2.29 
2.33 

1.13 
1.14 
1.14 
1.15 
1.15 

1.28 
1.28 
1.29 
1.29 
I .30 

2.29 
2.32 
2.33 
2.36 
2.40 

2.20 
2,25 
2.26 
2.30 
2.35 

1.13 
1.14 
1.14 
1.15 
1.16 

1.30 
1.28 
1.28 
1.28 
1.27 

2.40 
2.3 1 
2.30 
2.26 
2.23 

2.1 7 
2.25 
2.28 
2.35 
2.45 

1.1 1 
1.14 
1.15 
1.17 
1.19 

1.40 
1.29 
1.28 
1.23 
1.19 

3.01 
2.34 
2.25 
2.03 
1.86 

2.08 
2.25 
2.29 
2.4 1 
2.56 

1.07 
1.13 
1.15 
1.18 
1.22 

1.51 
1.31 
1.28 
1.21 
1.15 

3.54 
2.40 
2.25 
1.94 
1.70 

2.17 
2.24 
2.25 2.32 2.20 
2.29 
2.33 

1.13 
1.14 
1.14 1.08 1.14 
1.15 
1.15 

1.28 
1.28 
1.29 1.39 1.28 
1.29 
1.31 

2.28 
2.32 
2.33 2.59 2.32 
2.37 
2.45 
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I 1.631 
I .9 
2.2 

1.3 
1.6 

2 1.631 
1.9 
2.2 

Table 1-ontinued 

(b)  L', = 8, r ,  = 1 
Binding energy 
Function Type l u  Type Ib 4 Numerical 

0.75 1.25 J3.02 1.75 2.25 

0.80 0.78 0.78 0.78 0.78 0.78 0.92 0.79 
0.78 0.78 0.78 0.78 0.78 0.78 
0.78 0.78 0.78 0.78 0.77 0.78 

0.92 0.77 0.74 0.74 0.77 0.75 
0.78 0.74 0.74 0.74 0.76 0.75 
0.77 0.74 0.74 0.74 0.76 0.75 1.13 0.76 
0.74 0.74 0.74 0.74 0.75 0.75 
0.74 0.74 0.75 0.75 0.75 0.76 

\ 

1.3 1 2.94 3.00 3.01 3.01 3.01 3.01 
2.99 3.01 3.00 3.00 2.99 3.01 

:::?I ~ 2.99 3.01 3.00 3.00 2.99 3.00 2.40 3.02 
1.9 i 3.00 2.99 2.98 2.98 2.97 2.99 
2.2 1 2.98 2.97 2.95 2.95 2.93 2.96 

Expectation values ( r p )  
Function Type l a  Type Ib 4J Numerical 

0.75 1.25 J'3.02 1.75 2.25 

where c is a parameter, have been included for the purposes of comparison. These results 
give some indication of how well the functional form of 4(x) agrees with the exact 
function. Calculations with type l a  and l b  trial functions and tl = c (the variational 
parameter calculated with equation (18)) provide a good measure of any improvements 
given by the method. 

In table l(a and b) results are given for the square well potential. The trial function 
defined by equation (17) and equation (9) or (10) gives more accurate energy values 
than (18). That is, errors of over 20 % are reduced to between 0.1 and 3 % depending 
on the value chosen for tl and E, .  For the exponential potential, equation (18) is a much 
better approximation to the wavefunction. However, as can be seen in table 2(a and b)  
type 1 functions give improved results. 
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The expectation values in these cases are more sensitive to the choice of a and E,. 
accuracy is usually improved by taking E ,  close to the calculated value of E ,  and in the 
tables we give results for type l b  functions with E ,  equal to the exact value of the energy. 

In table 3 we give results for the Coulomb potential. In this case we used the function 

and for comparison the trial function 

fb(r) = r2  e-cr  

Table 2. Binding energy and expectation values for the exponential potential 

( a )  LT, = 4, ro = 1 
Binding energy 
Function Type l u  Type 1b 4 Numerical 

\ 
\-Eo)' 

0.25 J0.317 0.75 1.25 1.75 " 
I 

0.2 ' 0,234 0.293 0.308 0.313 0,298 0,314 
0.5 0.303 0.315 0.316 0,313 0,306 0,316 
0.7071 0,316 0,316 0.316 0,315 0,314 0.316 0.304 0,317 
0.8 I 0.315 0.316 0.316 0.316 0.316 0,316 
1.1 i 0.299 0.314 0,316 0.313 0,309 0,311 

Expectation values (9 )  
Function Type l a  Type I h  Q, Numerical 

~ - 

0,25 d0.317 0.75 1.25 1.75 

0.5 

0.8 ~ 

- 2  0.707 ~ 

1.1 1 
0.2 , 
0.5 1 

- 1 0.707 1 
0.8 ::: ~ 

0.5 
1 0.7071 

0.8 ~ 

0.2 1 
0.5 ~ 

2 0,707 I 

1 .1  

1.1 I 

0.8 ~ 

0.4 1 
0.73 
0.9 1 
0.9 7 
1.01 

0.48 
0.64 
0.7 I 

0.72 
0.73 

3.28 
2.1 8 
1.99 
2.00 
2.26 

19.46 
6.3 1 
5.16 
5.41 
7.98 

0.64 
0.86 
0.93 
0.94 
0.94 

0.6 I 
0.70 
0.72 
0.72 
0.71 

2.29 
2.00 
1.99 
2.0 1 
2.06 

6,70 
5.09 
5.21 
s 34 
5.63 

0.75 
0.9 I 
0.94 
0.94 
0.9 3 

0.66 
0.72 
0.72 
0.72 
0.72 

2.10 
1.99 
2.00 
2.01 
1.98 

5.57 
5.16 
5.29 
5.3 I 
5.1 1 

0.98 
0.97 
0.94 
0.93 
0.94 

0.75 
0.72 
0.72 
0.72 
0.74 

1.95 
2.07 
2.04 
2.00 
1.87 

5.58 
6.03 
5.53 
5.26 
4.40 

1.13 
0.97 
0.93 
0.92 
0.96 

0.79 
0.71 
0.7 I 
0.72 
0.75 

2.0 1 
2.19 
2.07 
2.00 
1.80 

7.40 
6.95 
5.72 
5.24 
4.05 

0.89 
0.90 
0.93 I .00 
0.95 
1 .os 
0.72 
0.72 
0.72 0.71 
0.72 
0,73 

1.92 
I .96 
1.99 2.12 
2.0 1 
2.06 

4.66 
4.97 
5.22 6.01 
5.34 
5 4 2  

0.9 I 

0.77 

1.99 

5 .17  
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0.5 
0.8 

1.4 
1.7 

- 1  1.104 

Table 2-continued 

0.85 
1~00 
1.10 
1.13 
1.12 

(b) U, = 8, ro = 1 
Binding energy 
Function Type la 

1.4 
1.7 

0.5 
0.8 

( -E,)'" L, 0.75 J1.46 1.25 1.75 2.25 

0.5 1.31 1.40 1.41 1.45 1.46 1.45 

1.39 1.46 
1.4 
1.7 1.43 1.45 1.45 1.46 1.46 

Expectation values ( r p )  
Function Type la  Type 1b 4 Numerical 

1.25 
1.29 

3.8 1 
2.40 

Jl.46 1.25 1.75 2.25 

1.58 1.61 1.89 2.11 2.13 
1.98 2.00 2.19 2.30 2.13 
2.18 2.18 2.22 2.22 2.17 2.44 2.08 
2.20 2.20 2.16 2.13 2.23 
2.16 2.15 2.10 2.09 2.32 

0.96 0.97 1.05 1.10 1.11 
1.07 1.08 1.12 1.14 1.11 
1.12 1.12 1.12 1.12 1.11 1.10 1.1 1 
1.12 1.12 1.11 1.10 1.12 
1.10 1.10 1.10 1.1 1 1.14 

1.42 1.41 1.30 1.25 1.25 
1.27 1.26 1.24 1.24 1.24 
1.24 1.24 1.26 1.28 1.25 1.36 I .24 
1.26 1.26 1.27 1.27 1.25 
1.28 1.27 1.25 1.23 1.26 

2.62 2.56 2.09 1.96 1.99 
1.99 1.98 1.94 2.03 1.94 
1.95 1.96 2.04 2.14 1.98 2.46 1.93 
2.05 2.05 2.06 2.06 2.03 
2.09 2.08 1.96 1.88 2.10 

These calculations are relatively insensitive to CI and E, and the 25 % error in the energy 
calculated with (20) was reduced to a few per cent in most cases. 

Graphical comparison of the exact and typical variational functions for these 
potentials is given in figures 1 , 2  and 3. For the square well and exponential potentials, 
on the scale used in the diagrams, it is not possible to differentiate between the exact 
and type l a  functions, and for the Coulomb potential it is not possible to differentiate 
between the exact and type lb functions. 

For all the potentials we have included the case of U in (17) or (19) equal to the 
variational value c in (18) or (20), and without exception there is considerable improve- 
ment in accuracy using type l a  and lb trial functions. 
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I .2 
1 .5 

- 2  1.6 
2.0 
2.4 

I .2 
I .5 

- I  1.6 
2.0 
2.4 

1 .2 
I .5 

I 1.6 
2.0 
2.4 

T L John and K L Williams 

I .22 
I .48 
1.54 
1.71 
1.79 

0.85 
0.92 
0.94 
0.97 
0.98 

I .60 
1.51 
1 .50 
1.51 

I I .s1- 

Table 3. Binding energy and expectation values for the Coulomb potential, Z = I 

Binding energy 
Function Type l u  Type Ih 4 Numerical 

I .2 0.938 0,948 0.957 0,969 0,978 0.979 
1.5 0,967 0,965 0.964 0.965 0.967 0.964 

0,973 0,968 0.965 0,961 0,960 0.965 0.750 1.00 
2.0 , 1 0,985 0.973 0,956 0.928 0,909 0.976 
2.4 , 0.989 0,969 0.934 0.871 0.825 0,985 

Expectation values ( r P )  
Function Type l a  Type Ih 4 Numerical 

____ ___ 
\'~\(  - Eo11 

P 2 \ \  0.6 1.0 1 . 1  2.2 3.0 

1.33 
1.53 
I .58 
1.73 
I .86 

0.88 
0.94 
0.95 
0.99 
I .03 

I , 53  
I ,41 
I 4 5  
1.41 
1.35 

2.92 
2.73 
2.69 
2.53 
2.35 

1.43 
I .59 
I .64 
1.80 
1.96 

0.9 1 
0.96 
0.97 
1.02 
1.08 

I .50 
1.44 
1.42 
1.34 
1.26 

2.80 
2.60 
2.53 
2.25 
1.99 

1.57 
I .70 
I .74 
1.93 
2.16 

0.95 
0.99 
1.01 
I .07 
1.15 

I 4 6  
I .39 
I ,37 
1.26 
1,16 

2.72 
2.45 
2.35 
1.96 
1.65 

I ,66 
1.78 
1.82 
2.05 
7.37 

0.97 
1.01 
1.03 
1.11 
1.20 

I .45 
1 ,37 
1.34 
1.21 
1.10 

2.70 
2.38 
2.26 
1.82 
I .48 

-.- 

I .9n 
1 6 1  
1.57 0.75 2.00 

1 6 4  

1.05 
0.96 
0.95 0.75 I .00 
0.95 
0.96 

1.36 
I .43 
I 4 5  I .67 I .50 
I .49 
1 .so 
2.38 
2.57 
2.65 3.33 3.00 
2.85 
3.00 

I . j n  

5. Two particle systems 

We can in principle generalize the method described in 0 2 to systems of two or more 
particles, however, certain practical diffculties are encountered. For example, for two 
electron helium-like systems of nuclear charge Z ,  the Schrodinger equation (in atomic 
units) is 

r1 and r 2  being the position vectors of the two electrons and r I 2  = Irl - r 2 ( .  The two 
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0 1.0 2.0 3.0 4.0 
r 

Figure 1. Radial wavefunction for the square well potential U, = 4. A exact solution, 
type l b  (c( = 1.0); B type la (a = 1.0, (-E,)”’ = 1.75); C 4. 

I I I I 
0 1.0 2.0 3.0 4.0 

r 

Figure 2. Radial wavefunction for the exponential potential U ,  = 4. A exact solution, 
type l b  (a: = 0.5); B type la  (e = 0.5, ( = 1.25); C 4, 

particle Green function (both particles free) corresponding to equations ( 5 )  is a solution 
of the differential equation 

(22 )  (V: + V: + Eo)G(E,Ivl , r2  ; r; , v i )  = - 6(rl - v;)6(v2 -U;). 

The integral equation corresponding to the two particle system and bound states is 

(23) 
for E, > E. 

If we consider the ground state of such systems, the total orbital angular momentum 
is zero and the Green function can be expressed in terms of hyperspherical coordinates. 
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I hl 

0 1.0 2.0 3.0 4.0 
r 

Figure 3. Radial wavefunction for the hydrogen atom. A exact solution, type la  ( Y  = 2.0. 
( - E 0 ) ' ' *  = 0.6); B type l b  ( Y  = 2.0): C 4. 

Morse and Feshbach (1953 p 1732 equation (12.3.92)) give a very complicated expression 
for the two particle Green function in terms of Jacobi polynomials, Bessel and Hankel 
functions and calculations with such expressions become quite impractical without 
some simplifications and we have not made use of their results here. 

However, it is possible to simplify calculations by working in terms of one particle 
Green functions. For example, we can expand the wavefunction in the form 

The resulting equation for f ( r )  is 

. x  

P(x)f(x)dx+ 1 P ( x ) f ( x ) x - '  d.u 
r 

- +(Z2 - c 2 )  [ P(x)f(x) dx) 
0 

where 

r 
U ( r )  = 

The derivation of equation (25)  for continuum states and Z = 1 can be found in numerous 
texts for example Bransden et al(1958). 
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1.286 
1.4 
1.8 
2.2 

The type l a  trial functions for this system are given by 

5.744 5.744 5.744 5.744 5.744 5.744 
5.744 5.745 5.744 5.743 5.741 5.744 5.735 5.723 5407 5.745 
5,734 5.744 5.741 5.736 5.721 5.744 
5.728 5.743 5.735 5.726 5.700 5.744 

f’(r) = lom Go( - cilx, r) (A + c i  - U(X))~(X) - 2P(x) 

+ JXm P(x’)&(x’)x’-’ dx’-&Z2 +A) jom P(x’)~(x‘) dx’) ] dx (27) 

and type l b  functions can be obtained from (27) by putting A = -E; = K2. Results 
for H-  (Z = 1) and He (Z = 2) with 

4(x) = xe-ax (28) 
are given in table 4. We also give the value of c2 computed from the numerical solution 
of (25), this corresponds to the most accurate value possible with a wavefunction of the 
form (24). As in the one particle calculations comparison with the trial function 

f‘(r) = re -“  (29) 

are also given in table 4. This trial function is more accurate for H- than He, although 
type l a  and type l b  functions give more accurate results choosing a and 

Results for alternative expansions, the Hartree-Fock type (see Roothaan and Weiss 
1960) 

suitably. 

+(rly r2) = m A W . 2 )  (30) 

+kl? r2) = m1 3 1 2  2 r12) (31) 

and the Hylleraas type 

Table 4. Binding energy for helium-like systems 

Z = 1  
Function Type l a  Type lb  4 HF Pekeris Numerical 

0.05 0.15 J’0.027 0.25 0.35 

1.023 1.026 1.026 1.025 1.024 1.026 
0.279 1.026 1.026 1.026 1.026 1.026 1.026 
0.3 1.026 1.026 1.026 1.026 1.026 1.026 1.025 0.976 1.056 1,027 
0.5 1.021 1.026 1.026 1.026 1.023 1.026 
0.7 1.016 1.026 1.027 1.024 1.017 1.025 

z = 2  
Function Type l a  Type lb  4 HF Pekeris Numerical 

0.7 1.1 J1.745 1.5 1.9 
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are also given in table 4. The greatest accuracy has been obtained by Pekeris (1958), 
however, the expansion (24) is an improvement on expansions of type (30), especially 
for H- ,  where the attachment energy computed by the Hartree-Fock expansion is 
negative . 

6. Conclusions 

As with any method in mathematical physics, in assessing its usefulness, one has to weigh 
the obvious disadvantage in this case of calculating integrals to define trial functions, 
against the obvious improvements in accuracy particularly for the wavefunctions. I t  
appears in practice that computations for bound states with type l a  functions are easier 
to handle than type lb. A reliable guide to the constant Eo is to choose the computed 
value for E .  Applications to the continuous spectrum of similar systems are given in 
paper 11. 
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